Functional Capsule Membranes 2
49) A Large Nylon Capsule coated with a Synthetic Bilayer Membranes. Permeability Control of NaCl by Phase Transition of the Dialkylammonium Bilayer Coatings
Y. Okahata, H-J. Lim, G. Nakamura, and S. Hachiya

Functional Capsule Membranes 3
47) Signal Receptive Capsule Membrane. Ca2+-induced Permeability Control of Large Nylon Capsule coated with Synthetic Bilayer Membranes
Y. Okahata, H-J. Lim, and G. Nakamura

Functional Capsule Membranes 4
48) Photoresponsive Capsule Membranes. Permeability Control of NaCl from a Nylon Capsule coated with a Synthetic Bilayer Membrane containing an Azo–chromophore
Y. Okahata, H-J. Lim, and S. Hachiya

Functional Capsule Membranes 5
51) Ultrasound Responsive Permeability Control of Bilayer–coated Capsule Membranes
Y. Okahata and H. Noguchi,

Functional Capsule Membranes 6
45) Selective Storage and Permeation of NaOH and HCl across a Capsule Membrane Coated with Charged Synthetic Bilayers.
Y. Okahata, G. Nakamura, S. Hachiya, H. Noguchi, and H-J. Lim

Functional Capsule Membranes 7
58) Bilayer–coated Capsule Membranes Part 2. Photoresponsive Permeability Control of Sodium Chloride across a Capsule Membrane
Y. Okahata, H-J. Lim, and S. Hachiya

Functional Capsule Membranes 8
60) Functional Capsule Membranes 8. Signal Receptive Permeability Control of NaCl from a Large Nylon Capsule coated with Phospholipid Bilayers
Y. Okahata and H-J. Lim
Functional Capsule Membranes 9

59) Bilayer–coated Capsule Membranes IV. Control of NaCl Permeability by Phase Transition of Synthetic Bilayer Coatings
 Y. Okahata, H-J. Lim, S. Hachiya, and G. Nakamura

Functional Capsule Membranes 10

64) pH–Sensitive Capsule Membranes. Reversible Permeability Control from the Dissociative Bilayer–coated Capsule Membrane by an Ambient pH Changes.
 Y. Okahata and T. Seki

Functional Capsule Membranes 12

63) Activity Control of an Enzyme immobilized on a Capsule Membrane with Synthetic Bilayers
 Y. Okahata, S. Hachiya, and T. Seki

Functional Capsule Membranes 13

61) pH–Sensitive Permeation of Ionic Fluorescent Probes from Nylon Capsule Membranes
 T. Seki and Y. Okahata

Functional Capsule Membranes 14

56) pH–Responsive Permeation of Bilayer–coated Capsule Membranes by Ambient pH Changes
 Y. Okahata and T. Seki

Functional Capsule Membranes 15

 Y. Okahata, S. Hachiya, and T. Seki

Functional Capsule Membranes 16

68) Permeation of Fluorescent Probes at Phase Transitions from Bilayer–coated Capsule Membranes
 Y. Okahata, N. Iizuka, G. Nakamura, and T. Seki

Functional Capsule Membranes 17

69) Selective pH–Gradient Formation across a Capsule Membrane corked with Charged Synthetic Bilayers.
 Y. Okahata, H. Noguchi, and T. Seki,
Functional Capsule Membranes 18

70) Controlled Release from a Large Nylon Capsule membrane corked with
Phosphatidylethanolamine Bilayers: Effect of Temperature, pH and Concentration of Ca2+
Ions

T. Seki, and Y. Okahata

J. Microencapsulation, 2, 13–22 (1985)

Functional Capsule Membranes 20

71) Permeation Control of Ionic Fluorescent Probes by Ambient pH Changes from Nylon
Capsule Membranes Depending on Their Microstructures

T. Seki and Y. Okahata

Functional Capsule Membranes 22

76) The Electrical Breakdown and Permeability Control of a Bilayer–corked Capsule Membrane
in an External Electric Field

Y. Okahata, S. Hachiya, K. Ariga, and T. Seki

Functional Capsule Membranes 24

Control

Y. Okahata

Functional Capsule Membranes 31

90) Polymerizable Lipid–Corked Capsules. Polymerization at Different Positions of Corking Lipid
Bilayers on the Capsule and Effect of Polymerization on Permeation Behavior

Y. Okahata, K. Ariga, and T. Seki

A）二分子膜被覆カプセル膜 に関する研究 1 報

Functional Capsule Membranes 1

44) Permeability of Large Polyamide Microcapsule coated with Synthetic Bilayer Membranes

Y. Okahata, S. Hachiya, and G. Nakamura